Section 3

Electron Configurations

Aufbau Principle

- Electrons occupy lowest energy orbital available
 - Within a principal energy level: s, p, d, f
 - Orbitals within one principal energy level can overlap orbitals of another

Electron Filling Order

Periodic Table Helps!

Pauli Exclusion Principle

 Maximum of 2 electrons in an orbital, but only if they have opposite spin.

Hund's rule

 Electrons with same spin must occupy each equal energy orbital before additional electrons with opposite spins can occupy the same orbital.

1) Electron Configuration Notation

Pattern of: number, letter, superscript
 subshell designation
 # of electrons in subshell

Electron Configuration Notation

- **Ex:** N
 - # of electrons?
- Use the fill order. Start with the lowest energy, fill to capacity, go to next lowest energy, etc. Stop when you run out of electrons.
 - Superscripts = total electrons

Electron Configuration Notation

• You try ... Zinc

Electron Configuration Notation

• Answer:

$1s^2 \, 2s^2 2p^6 \, 3s^2 3p^6 \, 4s^2 3d^{10}$

2) Noble Gas Notation

- Shorthand
 - Find the noble gas closest to the element (without going over).
 - Ex: For Gold (79): Xenon (54)
 - We write [Xe] and start counting from there
 - The first orbital after xenon is 6s

Noble Gas Notation • [Xe]6s² 4f¹⁴ 5d⁹

Check: (Xe's atomic number) 54 + 2 + 14
+ 9 = 79 (gold's Atomic number)!

• Silver

3) Orbital Diagrams

- Show the orbital distributions of electrons related to a sublevel
- Include a line for each orbital
 - 1 = orbital with 1 electron
 - 11 = orbital with 2 electrons

Orbital Diagrams

• Nitrogen: 1s²2s²2p³

- Write notation of N

 Then we fill them with electrons using the Aufbau principle, Pauli exclusion principle, and Hund's law

$$\frac{\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow}{1s}\frac{\uparrow}{2s}\frac{\uparrow}{2p}\frac{\uparrow}{2p}\frac{\uparrow}{2p}$$

Orbital Diagrams

• You try another example: Cu

Orbital Diagrams

• Answer

4) Electron Dot Structures

- Valence electrons
 - Electrons in outermost energy level.
 - Responsible for chemical properties

Electron Dot Structures

- Valence electrons <u>only</u>
- Place 'dots' around element symbol
- 4 sides of element = orbitals
- Fill these orbitals one at a time (Hund's)

Electron Dot Structures

- P.141 #23(yellow box), 26, 28
- P.147 #81

